Selasa, 17 Oktober 2017

MEMORY CACHE



MEMORY CACHE
 
Definisi Cache Memory
Memori utama yang digunakan sisterm komputer pada awalnya dirasakan masih lambat kerjanya dibandingkan dengan kinerja CPU, sehingga perlu dibuat sebuah memori yang dapat membantu kerja memori utama tersebut, sebagai perbandingan waktu akses memori cache lebih cepat 5-10 kali dibandingkan memori utama.





Cache memory adalah memori yang memiliki kecepatan sangat tinggi yang digunakan sebagai perantara antara RAM dan CPU. Memori ini mempunyai kecepatan yang lebih tinggi daripada RAM. Memori ini digunakan untuk menjembatani perbedaan kecepatan CPU yang sangat tinggi dengan kecepatan RAM yang jauh lebih rendah. Jika processor membutuhkan suatu data, pertama-tama ia akan mencarinya pada cache. Jika data ditemukan, processor akan langsung membacanya dengan delay yang sangat kecil. Tetapi jika data tidak ditemukan, processor akan mencarinya pada RAM.
Cache adalah memory berukuran kecil yang sifatnya temporary (sementara). Cache umumnya terbagi menjadi beberapa jenis, seperti L1 cache, L2 cache dan L3 cache. Walaupun ukuran filenya sangat kecil, namun keceptannya sangat tinggi. Dalam terminologi hardware, istilah ini biasanya merujuk pada memory berkecepatan tinggi yang menjembatani aliran data antara processor dengan memory utama (RAM) yang biasanya memiliki kecepatan jauh lebih rendah.

Fungsi dan Kegunaan Cache
Cache berfungsi sebagai tempat penyimpanan sementara untuk data atau instruksi yang diperlukan oleh processor. Secara gampangnya, cache berfungsi untuk mempercepat akses data pada komputer karena cache menyimpan data/informasi yang telah diakses oleh suatu buffer, sehingga meringankan kerja processor.
Dalam Internet sebuah proxy cache dapat mempercepat proses browsing dengan cara menyimpan data yang telah diakses di komputer yang berjarak dekat dengan komputer pengakses. Jika kemudian ada user yang mengakses data yang sama, proxy cache akan mengirim data tersebut dari cache-nya, bukan dari tempat yang lama diakses. Dengan mekanisme HTTP, data yang diberikan oleh proxy selalu data yang terbaru, karena proxy server akan selalu mencocok kan data yang ada di cache-nya dengan data yang ada di server luar.

Kecepatan Cache Memory
Transfer data dari L1 cache ke prosesor terjadi paling cepat dibandingkan L2 cache maupun L3 cache (bila ada). Kecepatannya mendekati kecepatan register. L1 cache ini dikunci pada kecepatan yang sama pada prosesor. Secara fisik L1 cache tidak bisa dilihat dengan mata telanjang. L1 cache adalah lokasi pertama yang diakses oleh prosesor ketika mencari pasokan data. Kapasitas simpan datanya paling kecil, antara puluhan hingga ribuan byte tergantung jenis prosesor. Pada beberapa jenis prosesor pentium kapasitasnya 16 KB yang terbagi menjadi dua bagian, yaitu 8 KB untuk menyimpan instruksi, dan 8 KB untuk menyimpan data.

Transfer data tercepat kedua setelah L1 cache adalah L2 cache. Prosesor dapat mengambil data dari cache L2 yang terintegrasi (on-chip) lebih cepat dari pada cache L2 yang tidak terintegrasi. Kapasitas simpan datanya lebih besar dibandingkan L1 cache, antara ratusan ribu byte hingga jutaan byte, ada yang 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, bahkan 8 MB, tergantung jenis prosesornya. Kapasitas simpan data untuk L3 cache lebih besar lagi, bisa ratusan juta byte (ratusan mega byte).

Desain Cache pada Sistem Komputer
Pada rancangan prosesor modern dengan beberapa tingkat pipeline, upaya untuk mengisi penuh seluruh pipeline dengan instruksi dan data perlu dilakukan agar operasi sistem komputer secara keseluruhan efisien.
Perbedaan kecepatan operasi antara prosesor dan memori utama bisa menjadi kendala bagi dicapainya efisiensi kerja sistem komputer. Bila prosesor bekerja jauh lebih cepat daripada memori utama maka setiap kali prosesor mengambil instruksi atau data, diperlukan waktu tunggu yang cukup lama. Waktu tunggu tersebut akan lebih berarti bila digunakan untuk memproses data.
Kendala ini menyebabkan diperlukannya cache, yakni memori berkapasitas kecil tetapi berkecepatan tinggi, yang dipasang di antara prosesor dan memori utama. Instruksi dan data yang sering diakses oleh prosesor ditempatkan dalam cache sehingga dapat lebih cepat diakses oleh prosesor. Hanya bila data atau instruksi yang diperlukan tidak tersedia dalam cache barulah prosesor mencarinya dalam memori utama.
Cache umumnya menggunakan memori statik yang mahal harganya, sedangkan memori utama menggunakan memori dinamik yang jauh lebih murah. Sistem komputer akan bekerja sangat cepat apabila seluruh sistem memori utamanya menggunakan memori statik, tetapi akibatnya harga sistem komputer akan menjadi sangat mahal. Selain itu, karena hamburan panas pada memori statik lebih besar, sistem komputer yang menggunakan memori statik ini akan menghasilkan panas yang berlebihan.
 
Hirarki Sistem Memori
Pada sistem komputer terdapat berbagai jenis memori, yang berdasarkan kecepatan dan posisi relatifnya terhadap prosesor, bisa disusun secara hirarkis.



Puncak hirarki sistem “memori” komputer adalah register yang berada dalam chip prosesor dan merupakan bagian integral dari prosesor itu sendiri. Isi register-register itu bisa dibaca dan ditulisi dalam satu siklus detak.

Level hirarki berikutnya adalah memori cache internal (on-chip). Kapasitas cache internal yang sering disebut sebagai cache level pertama ini umumnya sekitar 8 KB. Waktu yang diperlukan untuk mengakses data atau instruksi dalam cache internal ini sedikit lebih lama dibandingkan register, yakni beberapa siklus detak.
Prosesor-prosesor mutakhir dilengkapi dengan cache level kedua yang kapasitasnya lebih besar dan ditempatkan di luar chip. Prosesor P6 (Pentium Pro), misalnya, cache level pertamanya berkapasitas 8KB untuk data dan 8 KB untuk instruksi. Cache level keduanya berkapasitas 256 KB, yang merupakan keping terpisah tetapi dikemas menjadi satu dengan prosesornya. Selama program dieksekusi, sistem komputer secara terus menerus memindah-mindahkan data dan instruksi ke berbagai tingkat dalam hirarki sistem “memori”.

Data dipindahkan menuju ke puncak hirarki bila diakses oleh prosesor, dan dikembalikan lagi ke hirarki yang lebih rendah bila sudah tidak diperlukan lagi. Data-data tersebut ditransfer dalam satuan-satuan yang disebut “blok”; satu “blok” dalam cache disebut satu “baris”. Umumnya, data yang berada pada suatu level hirarki merupakan bagian dari data yang disimpan pada level di bawahnya.
Program komputer pada umumnya tidak mengakses memori secara acak. Besar kecenderungannya bahwa bila program mengakses suatu word maka dalam waktu dekat word tersebut akan diakses lagi. Hal ini dikenal sebagai prinsip lokalitas temporal. Juga besar kecenderungannya bahwa dalam waktu dekat word yang berada di dekat word yang baru diakses akan diakses juga.
Yang terakhir ini dikenal sebagai prinsip lokalitas spatial. Karena sifat lokalitas temporal, maka harus diperhatikan word yang telah ada dalam cache, dan karena sifat lokalitas spatial maka perlu diperhatikan kemungkinan memindahkan beberapa word yang berdekatan sekaligus.

Rasio (Kena) dan Waktu Akses
Kemungkinan bahwa suatu kata (word) berupa data/instruksi ditemukan dalam cache (disebut kena atau hit) sehingga prosesor tidak perlu mencarinya dalam memori utama, akan tergantung pada program, ukuran dan organisasi cache. Bila kata yang diperlukan tidak ada dalam cache (berarti luput atau miss), maka prosesor harus merujuknya ke memori utama. Rasio kena (h) didefinisikan sebagai perbandingan antara jumlah perujukan yang berhasil memperoleh kata dari cache dengan banyaknya perujukan yang dilakukan.
h = (jumlah perujukan yang berhasil) / ( jumlah perujukan)

Dalam studi tentang cache, pengukuran umumnya justru terhadap rasio luput (miss) yang besarnya adalah:
m = (1 – h)

Waktu akses rata-rata, dengan asumsi bahwa perujukan selalu dilakukan ke cache lebih dahulu sebelum ke memori utama, dapat dihitung sebagai berikut:
t a = t c + (1-h) t m

Keterangan :
ta         =          adalah waktu akses rata-rata,
tc         =          adalah waktu akses cache dan tm adalah waktu akses ke memori utama.

Setiap kali prosesor terpaksa mengakses memori utama, diperlukan tambahan waktu akses sebesar tm(1-h). Misalnya, bila rasio kena adalah 0,85, waktu akses ke memori utama adalah 200 ns dan waktu akses ke cache adalah 25 ns, maka waktu akses rata-rata adalah 55 ns.
Bila persamaan ta disusun ulang, dapat ditulis menjadi:
ta = t c {1/k + (1-h)}

dengan K adalah rasio antara waktu akses memori utama dengan waktu akses cache (tm/tc).
Dari persamaan di atas dapat dilihat bahwa waktu akses rata-rata didominasi oleh rasio waktu akses memori utama dengan cache bila k kecil. Pada kasus di atas, dengan waktu akses memori utama 200 ns dan waktu akses cache 25 ns, maka k = 8. Rasio luput 1 prosen menyebabkan waktu akses rata-rata menjadi 27 ns, tidak jauh beda dengan waktu akses cache. Pada umumnya k berkisar antara 3-10.

Level Chace Memory
Hingga saat ini, cache memory terbagi atas tiga level yaitu L1, L2 dan L3. Cache memory memori level 1 (L1) adalah cache memory yang terletak dalam prosesor (internal cache). Cache memory ini memiliki kecepatan akses paling tinggi dan harganya paling mahal. Ukuran memori berkembang mulai dari 8KB, 64KB dan 128KB. Cache memory level 2 (L2) memiliki kapasitas yang lebih besar yaitu berkisar antara 256KB sampai dengan 2MB. Namun, cache memory L2 ini memiliki kecepatan yang lebih rendah dari cache memory L1. Cache memory L2 terletak terpisah dengan prosesor atau disebut dengan external cache.



Sedangkan cache memory level 3 hanya dimiliki oleh prosesor yang memiliki unit lebih dari satu misalnya dualcore dan quadcore. Fungsinya adalah untuk mengontrol data yang masuk dari tembolok L2 dari masing-masing inti prosesor. Level 2 atau L2 cache merupakan bagian dari strategi penyimpanan multi level untuk meningkatkan performa komputer. Terdapat tiga level cache yang digunakan pada komputer, yaitu L1, L2 dan L3 cache. Tiap-tiap cache tersebut menjembatani jarak (gap) diantara processor yang sangat cepat, dengan memori RAM (Random Access Memory) yang jauh lebih lambat. Sementara desainnya terus mengalami perubahan, L1 cache biasanya telah terintegrasi (built in) ke dalam processor, sementara L2 cache biasanya terintegrasi pada motherboard (bersamaan dengan L2 cache). Namun, beberapa processor kini menggabungkan L2 cache serta L1 cache, dan bahkan beberapa diantaranya juga menggungkan L3 cache. Kecepatan yang paling tinggi terdapat pada L1 cache, kemudian menurun pada L2 dan L3 cache. Namun kebalikannya, semakin besar angka cache, maka semakin besar pula kapasitas penyimpanan datanya.



Tugas dari cache processor adalah untuk mengantisipasi data request, sehingga ketika pengguna mengakses sebuah program yang sering digunakan, sebagai contohnya, instruksi-instruksi yang dibutuhkan untuk menjalankan program tersebut telah siap digunakan, disimpan pada cache. Ketika hal ini terjadi, CPU dapat memproses request tanpa adanya jeda (delay), sehingga dapat meningkatkan performa komputer secara drastis.

CPU pertama-tama akan memeriksa L1 cache, diikuti dengan L2 dan L3 cache. Jika processor telah menemukan bit data yang dibutuhkan, maka disebut dengan cache hit. Namun jika cache tidak menyediakan bit data yang dibutuhkan, processor mendapatkan sebuah cache miss, dan data perlu ditarik dari RAM yang lebih lambat atau hard disk yang juga lebih lambat.

Ukuran Cache
Semakin besar kapasitas cache tidak berarti semakin cepat prosesnya, dengan ukuran besar maka akan terlalu banyak gate pengalamatannya sehingga akan memperlambat proses. Kita bisa melihat beberapa merek processor, misalnya AMD mengeluarkan processor K5 dan K6 dengan cache yang besar (1 MB) tetapi kinerjanya tidak bagus. Kemudian Intel pernah mengeluarkan processor tanpa cache untuk alas an harga yang murah, yaitu seri Intel Celeron pada tahun 1998-an hasil kinerjanya sangat buruk terutama untuk operasi data besar, floating point, dan 3D. Karena kinerja cache sangat sensitif terhadap sifat beban kerja, maka tidaklah mungkin untuk mencapai ukuran cache yang optimum. Sejumlah penelitian telah menganjurkan bahwa ukuran cache yang ideal adalah antara 1 KB dan 512 KB.

Ukuran Blok
Adanya sifat lokalitas referensi menyebabkan nilai ukuran blok sangatlah penting. Apabila blok berukuran besar ditransfer ke cache akan menyebabkan hit ratio mengalami penurunan karena banyaknya data yang dikirim di sekitar referensi. Tetapi bila terlalu kecil, dimungkinkan memori yang akan dibutuhkan CPU tidak tercakup. Apabila blok berukuran besar ditransfer ke cache, maka akan terjadi :
1.Blok-blok yang berukuran lebih besar mengurangi jumlah blok yang menempati cache. Karena setiap pengambilan blok menindih isi cache yang lama, maka sejumlah kecil blok akan menyebabkan data menjadi tertindih setelah blok itu diambil.

2.Dengan meningkatnya ukuran blok maka jarak setiap word tambahan menjadi lebih jauh dari word yang diminta, sehingga menjadi lebih kecil kemungkinannya digunakan dengan cepat
Hubungan antara ukuran blok dan hit ratio sangat rumit untuk dirumuskan, tergantung pada karakteristik lokalitas programnya dan tidak terdapat nilai optimum yang pasti telah ditemukan. Ukuran antara 4 hingga 8 satuan yang dapat dialamati (word atau byte) cukup beralasan untuk mendekati nilai optimum.

SUMBER : http://javaandro.blogspot.co.id/2014/06/makalah-cache-memory.html

0 komentar:

Posting Komentar

Text Widget

Copyright © Gendut's | Powered by Blogger

Design by Anders Noren | Blogger Theme by NewBloggerThemes.com